If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3t^2+18t-21=0
a = -3; b = 18; c = -21;
Δ = b2-4ac
Δ = 182-4·(-3)·(-21)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{2}}{2*-3}=\frac{-18-6\sqrt{2}}{-6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{2}}{2*-3}=\frac{-18+6\sqrt{2}}{-6} $
| 11=n/2+8 | | 5t+4t=-6 | | 50.1+x=180 | | (X+x+2x)x=3 | | -5x-8=3x+56 | | t-9=26 | | 4+x=10x-14 | | (3z+23z)z=5 | | 3z+23zz=5 | | -5x+2(x+3)=-12 | | 7(x+1)+3x= | | 45-11x=4x | | 6x^2-60x=18x^2-36x | | 13=10+-2/q | | 8-6a=6+20-15a | | 6x^2+60=18x^2-36x | | -9+5x=-16 | | 4(r-61)=100 | | 180=120+(b+44) | | f/9+55=63 | | u/2-14=-11 | | M^2-23m+22=0 | | 7+3(x+1)=37 | | -7m+5m=3-7m-8 | | 3^5x=3^10 | | 3x-2=-1/2(4x-6 | | 15z=17z+16 | | 1-4x=-8-7x | | 27-5×x=83 | | 3r+4=7r+5 | | -2(n-3)=4n-2-2n | | 7x(7x+5)=4875 |